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1. Introduction 

In nonrelativistic quantum mechanics, the Hamiltonian of  a spinless charge carrier mov- 

ing in space in the absence of  an electric potential, but submitted to a uniform magnetic 

field B, is usually taken to be given by 

1( q): 
H B = ~ m  P -  A , 

where m is the mass, q the electric charge, c the speed of  light, P = (h/2zri)$7 (h denoting 
Planck's constant) and A is a vector potential for B, i.e. X7 x A = B. 

Up to unitary equivalence, the Hamitonian is independent of  the choice of  vector potential 
for B and one may choose e.g. A(x) = ½ (B x x). Further, it is well known that HB is 
essentially self-adjoint on C~(R3) ,  cf. [50]. 
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When the motion is restricted to a plane, only the component B of B perpendicular to 

the plane produces some effect and one therefore considers without loss of generality the 
2D Hamiltonian given by 

l( 
H s = ~ m  P -  A , 

where now A = (A l, A2) satisfies Ol A2 - ~2A 1 = B, HB being then essentially self-adjoint 
on C~(~2). 

The determination of the spectra of these Hamiltonians goes back to Landau in 1930 (see 

[41] or [42]). The operator H8 is in essence of the Hamiltonian of an harmonic oscillator 
and its spectrum is given by 

S p ( H s ) = { C n + ~ )  Iqlh 2--~-~mc IBI; n = 0, 1, 2 . . . .  }.  

To determine the spectrum of Hn, one may assume, by rotating the axes if necessary, that 
B = (0, 0, B). This is physically obvious and not difficult to check mathematically. But 
then it is easy to see that HB is essentially given as HB ® 1 + 1 ® (-h2/47r2m)(d2/dx 2) 
on C~a([R 2) ® C~a(N), and one gets 

[ ]qlh ) 
Sp(HB) = Sp(HB) + [0, + ~ )  = L ~  IIBII, + ~  • 

In the presence of an electric potential V, the resulting Hamiltonians are now the magnetic 

Schr6dinger operators formally given by HB + V in the 3D case and H8 + V in the 2D case. 
The spectral properties of these operators have been investigated by many mathematicians 

and physicists (see [28,40] and references therein), the best understood case being when 
V is smooth and periodic ([39,57]). In some aspects, the theory of C*-algebras and the 

noncommutative geometry of A. Connes have shown to be a very useful tool in this study, 
as beautifully illustrated by the work of J. Bellissard on the integer quantum Hall effect 

([11,16,26]). 
To study qualitative behaviour of magnetic Schr6dinger operators, discrete lattice models 

have also been considered (see e.g. [10,14]). In the case of a square lattice, the 2D discrete 

magnetic Laplacian analogous to H~ (also called Harper's model) have fascinated many 
authors and is still not yet fully understood. We refer to [13,55] for two recent reviews on 
this operator, although we shall recall some relevant facts in Section 2. One should note 
here that many spectral properties of 2D discrete magnetic Laplacians rely on properties of 

the noncommutative 2-tori intrisically associated to them, and that the spectrum depends 
on the magnetic field in a much more sophisticated way than in the 2D continuous case, 

leading to Hofstadter's famous butterfly. 
In the case of a 3D cubic lattice one may obviously introduce the discrete analogue of HB, 

as we do in Section 3, and which is naturally named the 3D discrete magnetic Laplacian. As 
we have not found any reference in the literature dealing explicitely with this model, our aim 
with these introductory notes is to initiate a mathematical study of the spectral properties 
of 3D discrete magnetic Laplacians, based on the properties of the noncommutative 3-tori 

which now enter the picture. 
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A nice introduction to noncommutative tori of arbitrary dimension may be found in [54]. 

Due to the work of many hands, one has by now a quite detailed knowledge of the structure 
of noncommutative 2-tori (also called rotation algebras by some authors). Noncommutative 

3-tori are also relatively well understood and, for convenience, we present in Section 4 a 

review of the results on these algebras needed later on. For completeness, we have included 
a classification result, which illustratres how the 3D case differs from the more simple 2D 

case. 
In Section 5, we obtain, as promised above, some spectral properties of 3D discrete 

magnetic Laplacians. Some of the 2D results have direct analogues, such as perfectness 

and symmetry around 0, absence of point spectrum, band structure in the so-called rational 

case, continuity with respect to the magnetic field, continuity of the integrated density of 

states. Some other results, such as Aubry duality and the connection with almost Mathieu 
operators, must be somewhat reformulated. We also mention some results which may serve 

as a basis for computing effectively numerical approximations of the spectra of some of 

these Laplacians. 
In the nonrational case, there are examples of discrete Laplacians with non-Cantor spec- 

trum (even connected spectrum), in contrast with the 2D case. In view of the description 
of the spectrum of Ha mentionned earlier, one possible guess is that this could always be 

true, i.e. 3D discrete magnetic Laplacians never have Cantor spectrum. However, in the 

discrete model, one does not have the same possibility of freely rotating the axes as in the 
continuous model, and it may therefore still happen that the spectrum exhibits a Cantor 

structure in some examples. In analogy with the 2D discrete case, a reasonable question is 
wether one can expect a Cantor spectrum whenever the associated noncommutative 3-tori 

is simple with a unique trace, but we have so far no result in this direction. Another question 

of interest (mentioned to us by Bellissard), which we do not take up in these notes, is wether 

the de Haas-van Alphen effect ([39,57]) can be observed in the 3D discrete model. 
Our notation for noncommutative 3-tori differs slightly from the usual one. It comes out 

naturally from the heuristic physical motivation given in Section 3 and makes life easier in 
some aspects. Otherwise, we use standard notation and terminology from operator algebras, 
homomorphisms and isomorphisms between C*-algebras being always assumed to be *- 

preserving. Nonspecialists in this field are invited to consult Fillmores pleasant guide [37] 
as a first source of information. 

2. On 2D discrete magnetic Laplacians 

We recall in this section a few facts about 2D discrete magnetic Laplacians, mainly for 
notational purposes. We refer to [ 13,55] for much more detailed reviews. 

Let 0 ~ ~. The associated 2D discrete magnetic Laplacian A o on a square lattice is the 
bounded self-adjoint operator acting on £2(7/2) given by 

(Ao~)(m,  n) = e-i3r0n~(m + l,  n) + ei:rOn~(m -- 1, n) 

+eizrOm~j(m, n + 1) + e-irWm~(m, n -- 1). 
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To be more precise, one should subtract four times the identity operator I from A0 in the 

definition of the 2D discrete magnetic Laplacian, but we follow [55] here. Note that A0 --41 
reduces to the usual 2D discrete Laplacian on £2(7/2) when 0 = 0. Up to some physical 
constant, 0 represents the (vertical) component of a uniform magnetic field perpendicular 
to the (horizontal) square lattice, and the discrete analogue of H8 is qualitatively given by 
41 - A0. Note also that the operator A0 often appears in some unitary equivalent disguise. 

One may obviously write 

A 0 = ( U * + U + V * + V ) ,  

where U and V are the unitaries on £2(7/2) defined by 

(U~)(m,  n) = e iJrOn ~(m - 1, n), 

(V~)(m, n) = e-i~r°m~(m, n - 1), 

and which satisfy the relation 

U V  = e2rCi°vu. (*) 

To include the case of a rectangular lattice one also considers Laplacians given by 

Ao., = (U* + U) + c(V* + V),  

where c E R, so A0 = A0,~. 
Let .4o denote the C*-subalgebra of /3(£2(7/2)) generated by U and V, i.e. ,4o = 

C*(U, V), so clearly A0,c 6 .A0 for all c. Then .4o may be identified as a noncommutative 

2-torus (or rotation algebra), i.e. as the universal C*-algebra generated by two unitaries 
satisfying the relation (*) above. The name rotation algebra stems from the decomposition 
of A0 as the crossed product of C(T) by the action of 7/induced by rotating Y through the 

angle 27r0. 
Let now fl, c 6 • and denote by Mo,[~ the multiplication operator acting on £2(7/) 

associated to the function 

m > 2cos(2zr(m0 + fl)). 

The almost Mathieu operator Ho,~.c is then the almost periodic discrete Schr6dinger 

operator acting on £2(7/) defined by 

Ho.~.c = A + cMo,~, 

where A denotes the Laplacian on £2(7/) defined by 

(A~)(m) = ~(m + 1) + ap(m -- 1). 

The spectrum of Ao.ciS related to the spectrum of Ho,~,c as follows: 

Sp(Ao,,,) = Sp(Ho,~,c) ifO ~ Q, 

Sp(A°,c)  = U Sp(Ho.~.c) i f0 ~ Q. 
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There exists an impressive amount of  literature concerning the spectral properties of  
the operators defined in this section. Again, we refer to [13,55] and the references given 
therein. Although there are many partial positive results in this direction, the main unsolved 

problem is the conjecture of  M. Kac (the so-called "Ten Martini Problem") saying that 

Sp(Ao,c)  is Cantor set whenever 0 ~ Q and c ~ 0. A recent result which "almost" solves 

this problem when c = 1 may be found in [44]: the set {0 ~ R I Sp(Ao)  is not a Cantor set} 
has Lebesgue measure zero. Another recent result concerning the behaviour of  II za0 II as 0 
varies is contained in [9]. 

3. The 3D discrete magnetic Laplacian 

Let 69 = (01,02, 03) E R 3. As a convention, we think of vectors written this way as 
column vectors whenever this makes sense. Further, when x ~ R 3, then the components of 

x are implicitely given as xl ,  x2 and x3. 

3.1 

Definition. The 3D discrete magnetic Laplacian, or 3D DML, on a cubic lattice (associated 
to 69) is the operator A O defined on e2(773) by 

( A o ~  )(m, n, p) = ebr(Ozp-O3n) ~ (m + 1, n, p) + e -br(O2p-Oan) ~ (m - 1, n, p) 

-t-ei~r(O3m-Olp)~(m, n -k- 1, p)  + e-i~r(Oam-OIP)~(m, n - 1, p) 

+ei~r(Oln-°2m) ~ (m, n, p + 1) + e-izr(Oln-O2m) ~ (m, n, p - 1). 

To be more precise, one should subtract six times the identity operator I from A o t o  

get the correct definition of  this Laplacian, but we follow here common use as in the 2D 
case. To motivate the definition, we adapt the argument given in [12, p. 38], in the 2D 

case. For clarity of  exposition, we disregard the physical constants whenever possible. 
More generally, one defines magnetic Laplacians on graphs in an analogous way, see e.g. 
[43,59]. 

We consider an electron described in a tight-binding model (Htickel's model) by a wave 
function ~ in e2(7/3), submitted to a uniform magnetic field B. Its energy operator £B 

may be qualitatively described, in a first approximation by means of  nearest neighbours 
interaction, by changing the phase of each term in the energy operator of  a free electron as 
follows: 

(EB~)(m, n, p)  = ei2JrAl(m'n'P)~(m + 1, n, p) + e -i27rA~(m-l'n'p) ~(m -- 1, n, p) 

+eizr A2(m'n'P) ~ (m, n + 1, p) -t- e-i2rr az(m'n-l'P) ~ (m, n -- 1, p) 

-}-eiZJrA3(m'n'P)~(m, n, p + 1) + e-i2nA3(rn'n'p-l)~(m, n, p -- 1), 

where Aj (m, n, p)  represents the product of  a physical constant p by the line integral of  a 
vector potential A for B along the segment between (m, n, p) and (m + 1, n, p)  for j = 1, 
or (m, n + 1, p)  f o r j  = 2, or (m ,n ,  p + 1) f o r j  = 3. 
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1 (B x x) and setting 69 = pB gives £B = AO after a short Now, choosing A(x) = 

computation. Thus 61 - A O may be considered qualitatively as a discrete analogue of 
HB. It is easy to check that choosing another vector potential for B just gives a unitarily 
equivalent operator. 

3.2 

As to be expected, A O may be expressed in terms of the canonical generators of  a 
noncommutative 3-torus. To see this, we first etablish some notation. 

We define ( , ) 8  : 7/3 x 7/3 > • by 

(x, Y)O = O .  (x x y) = det([OIxly]) ,  

and f rO:  7/3 x Z  3 > T b y  

frO(x, y) = eiTr(x,Y)O. 

An elementary verification gives that f ro  is a normalized 2-cocycle on 773 with values 

in the circle group T as defined in [63] (see also [4,5]) and we may form the associated 
projective regular representation Z O of 7/3 on g2(7/3), which is defined by 

(Zo(y)~) (x)  = f r o ( - x ,  y)~(x - y) 

and satisfies 

),O(X)A.O(y) = frO(X, y))~O(X + Y) = e i2:r (x,Y)O)~O(y))~O(x) 

for all x, y 6 773. 

The operators ~-O(Y) are called magnetic translation operators in [23] (see also [62]). 

Denoting by e l ,  e2 and e3 the canonical generators of 7/3 and setting 

U~ = )~o(eJ) , j = 1, 2, 3, 

we then get the following relations between the unitaries UI, U2 and U3 

UIU2 = ei2rc°3U2Ul, U2U3 = ei2:r°lU3U2, U3UI = ei2rr°2UIU3. (1) 

It is a simple exercise to check that 

)~O (Y) = e-iJr(°' y2y3-02y, y3 +03 y, y2 ) Ui v, Uf2 U3'3 (2) 

and that 

A O = U~ -+- UI -k- U~ + U2 -q- Uf  -k- U3, 

so A O is bounded, self-adjoint and has norm less or equal to 6. To include the case of  
a box lattice, not necessarily cubic, we also consider 3D discrete magnetic Laplacians 

AO, c (c 6 R 3) defined by 

AO, c = C 1 (U~ -]- U1) --[-c2(U~ --~ U2) -~-c3(U;  ']- U3), 

SO A 0 = AO,(I , [ , I  ). 
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Definition. We define the noncommutative 3-torus (associated to O)  as the C*-subalgebra 

,40  of B(e2(7/3)) generated by Ul, U2 and U3. 

Obviously, we have/10.c E .40.  
Let C*(7/3, a~.)) denote the reduced twisted group C*-algebra of 7/3 associated with f o  

(see [63]), i. e. the C*-subalgebra of B(e2(7/3)) generated by the set {)~O(Y) I Y ~ 7/3}. Due 

to (2), it is clear that 

• 3 A~ 9 ~- C r (T] ,frO). 

Further, it is well-known that 

,40 is the universal C*-algebra generated by three unitaries Ul, U2 and U3 satisfying 

(1). 

This result is a part of the folklore on this subject. For completeness, let us briefly sketch 
one possible way to prove it. As 7/3 is an amenable group, one knows that C~*(7/3, a~.~) is 

canonically isomorphic to the full  twisted group C*-algebra C* (7/3, ao)  (cf. [63]). Then the 
result follows easily by exploiting the universal properties of C*(7/3, ao)  and the fact that 

whenever three unitaries Ui, U2 and U3 satisfy (1), then one may define unitaries W(y) for 
y ~ 7/3 by 

W(y) = e -izr(O'y2y3-O2y'y3+O3yly2) U~" U~'2U~ '3, 

which then satisfy W(x)W(y) = fO(x,  y)W(x + y) for all x, y ~ 7/3. 

From this universal property of noncommutative 3-tori, it is clear that, up to isomorphism, 

.4 0 is only determined up to an even permutation of the components of O. It is a nontrivial 
fact that this is also true up to a general permutation, as we shall see in 4.8. 

3.4 

To give a small appetizer of how noncommutative 3-tori are useful when studying spectral 
properties of 3D DML's, let us show that the spectrum o f / 1 o m a y  not be a Cantor set even 
when O has some nonrational components. 

Let 0 e R and set ® = (0, - 0 ,  0). Let U and V denote the canonical generators of 
and set W = - V .  Then U, V and W are unitaries satisfying U V  = ei2~r°VU, V W  = 

W V, W U = e -i2zr0 U W. Hence, by the universal proprties of ..4 O, there exists an homo- 

morphism H : -40 ~ ~ such that/- /(UI) = U,/7(U2) = V and H(U3) = W. But 
then we have/7(/1 O) = U* + U. As it is well-known that Sp(U* + U) = [ -2 ,  2], this 

implies that [ -2 ,  2] _ Sp( /10) .  So Sp ( / 10 )  is not a Cantor set for this choice of O (even 
when 0 ~ O). 
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3.5 

We conclude this section with some remarks on noncommutative n-tori and the differenl 

uses of  notation in the literature. 

To each skew-symmetric matrix R = [rjk] e Mn(E), n > 2, one may associate a 

noncommutative n-toms -4R as the universal C*-algebra generated by n unitaries Ui, 

U2 . . . . .  U,, satisfying 

U/Uk = ei2rcrJ~UkUj, 1 < j ,  k < n, (3) 

which may be taken to be defined as the twisted group C*-algebra C* (7/", ~rR) ( 2  C* (7/", 

cr,~) since 7/" is amenable), where ere is the 2-cocycle on 77" with values in T defined by 

O" R (X, y) = e i~<x' gy) .  

This was apparently first observed by Elliott in [31 ]. We caution that he and many other 

authors use the transpose of  R instead of  R in (3), which is only a matter a convenience, but 

may cause that one comes out with a sign off if one is not cautious, as pointed out in [52]. 

Some authors prefer to regard -4R as associated to the antisymmetric bicharacter on 7/" 

(or, equivalently, the character on the second exterior power 7/n/x 7/n) given by 

p s ( x ,  y) = crR(x, y)~rR(y, x) = e i2rr(x'Ry).  

Beware that this does not mean that they take -4R to be defined as C,.* (7/", PR). 

There is a natural notion of  cohomological equivalence between normalized 2-cocycles 

on the same group (see e.g. [4,5,47,63]) with the property that cohomologous 2-cocycles 

give rise to isomorphic reduced (resp. full) twisted group C*-algebras. (This reflects in 

fact the freeness of choosing different vector potentials for the same magnetic field in the 
case of  .7/2 o r  7/3.)  Up to cohomological equivalence, all normalized 2-cocycles on 7/,z are 

given as some ~rR, R skew-symmetric in M, (~), cf. [4,5]. For example, the 2-cocycle 
pM(X, y)  -~ e i2rr(xtMy), M ~ Mn(~) ,  is cohomologous to ~rR with R = M - M r. 

For a given 69 6 R 3, our .4 0 corresponds to .4R where 

0 O3 
R = -03  0 

02 -tgl 

If  we had chosen the vector potential .g,(x) = (b2x3, b3xl,  b t x2) for B instead of A in 3.1, 

this would have led us to the 2-cocycle PM on 7/3, where 

o3 01 
M -- 0 OI , 

02 0 0 

which is cohomologous to ~rR with R as above.  
As will be seen in the next sections, our "vector" notation for 3-tori has some advantages. 
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Finally, it should by now be obvious that one may also consider nD discrete magnetic 
Laplacians belonging to noncommutative n-tori, but we shall stick to the 3D case in this 
paper, even if some of the results are also valid in higher dimensions. 

4. A review of some properties of  noncommutat ive  3-tori 

We use freely the notation introduced in the previous sections. Let O ~ R 3. We denote by 

Ul, U2 and U3 the canonical generators of.Ao, and by )4;69 the twisted group von Neumann 
algebra vN(Z 3, cro), i.e. the weak closure of .A O = C*(2e3, trO) in B(£2(2~3)). 

4.1 

Let ~ e •3, ~ = O(modT/3). It is quite (but not totally) obvious that ,A& and .A 0 
(resp. WO and WO) are isomorphic. Anyhow, it follows from the universal property of 
noncommutative 3-tori that there exists an isomorphism Jr from ,Ao on to / !  0 satisfying 

zr(~lj) = Uj, j = 1, 2, 3, 

where Ul, U2, U3 denote the canonical generators of ,A& 

4.2 

For x E 7/3, let 8x ~ £2(713) be the delta function at x and set 8 = 80. Then we have 

XO(y)8x = cro(y, X)Sy+x, (4) 

and especially Z~9(y)8 = By, for all x, y ~ 7/3. 

It is well-known (cf. [63]), and easy to check using (4), that the vector 8 is cyclic, tracial 
and separating for WO. Hence the map r : WO > C defined by r(W)  = (W& 8) is a 
faithful normal tracial state on WO which satisfies (and is uniquely determined by) 

r(ZO(y)) = 1,y = 0, r(XO(y)) = 0, y ¢ 0. 

We also denote by r the restriction of r to .3, O. The trace r is the analogue of integration 
with repect to normalized Haar measure on q]-3. The algebra .A O (resp. WO) is a stably 
finite C*-algebra (resp. a finite von Neumann algebra), which is isomorphic to C(T 3) (resp. 
L°°(~3)) via Fourier transform when O = 0(mod Z3). It is not difficult to show (e.g. by 
"pre" Tomita-Takesaki theory, cf. [37], 9.1) that the commutant of WO is 142(_0). This 
supports the idea that elements of WO may be thought of as generalized periodic discrete 
Schrrdinger operators as they commute with the magnetic translation operators associated 
to ( - 0 ) .  

4.3 

One of the main tool for doing analysis in WO is Fourier analysis. 
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For each W 6 kV O we define its Fourier transform ~' ~ ~2(Z3) by W = W& Then we 

have 

W(x) = (W~, ~x) = r (WXo(x)* ) ,  x e 713. 

If  we denote by 11.112 the norm on WO defined by IIWII~ = r(W*W) = IIWII~, then the 
Fourier series of W, defined as 

~(x)zo(x), 
XE~ 3 

converges to W in II. ][9_-norm, and W is therefore uniquely determined by W as an element 

of  WO • As usual, the Fourier series of  W e WO does not necessarily converges to W 
in operator norm, even if W ~ AO. But it does if W belongs to the smooth canonical 
subalgebra A ~  := {A E A o I A  ~ S(273)} of Ao ,  where S(773)(_ ~ C°c(~-3)) denotes the 

Schwartz space of rapidly decreasing complex functions on y3. 

4.4 

A 

There exists a canonical dual ergodic action a of T 3 -~ 273 on W~9 (cf. [47]) satisfying 

a3"(Uj)=yjUj,  3 ' e~ -3 ,  j =  1 ,2 ,3 .  

Each c~3" is in fact implemented by the unitary U3" on e2(27 3) defined by U3"~(x) --- 

3"(x)~(x), and we have or3" (-'-r~V) = " y 9  for all 3" E ~-3, W 6 W O, from which the ergodicity 
of c~ easily follows. The action t~ obviously restricts to an action on .A O, which we also 
denote by or. It is not difficult to check that the space of C~C-vectors for a is just A ~ .  For 

each k = 1, 2, 3, one may associate the infinitesimal generator Ok for this action in the kth 

direction of T 3, which is then a *-derivation on A~9 satisfying 

0k(A) = Z 27rixkA'(x))~O(x)" 
xE• 3 

4.5 

We denote by CO the subgroup of 2~ 3 given by 

CO = {x E Z 3 I (x, Y)O e Z for all y e 2~ 3 } 

= { X  E 273 [ X X O E 7/3]. 

A quick application of Fourier analysis gives that the centre of  W O is the von Neumann 
subalgebra of  142 0 generated by {)~O(x) I x ~ CO}. It is then not very difficult to conclude 

that the centre of  .,40 is the C*-algebra generated by {~.O(X) I x e CO} (see also [31], p. 
170-171). 

Let d ( O )  denote the dimension of Q + 01 ~) + 02 Q + 03 Q as a vector space over Q, 
so d ( O )  ~ {1, 2, 3, 4}. We say that 69 (or AO)  is rational whenever d ( O )  = 1, i.e. 69 
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has only rational components, while we say that ~ (or ~40) is totally irrational whenever 
d(O)  = 4, i.e. 1, 0~, 02 and 03 are rationally independent. 

It is a simple exercise to verify that CO = {0} if and only i fd (O)  E {3, 4}. This situation 
is often refered to as the nondegenerate case in the literature. 

The nontrivial implications in the following theorem are special cases of results in [58], 
see also [48]. 

Theorem. The following statements are equivalent: 

(i) d(19) e {3, 4}, 
(ii) .A O is simple, 

(iii) AO has a unique trace, 

(iv) 1420 is a factor, 

(v) ,,469 has a trivial centre. 

As 773 is amenable, it follows from [25] that kVO is always injective, and that !/V O is 
isomorphic to the hyperfinite Il l- factor whenever d(~9) 6 {3, 4}. 

Concerning the structure of noncommutative 3-tori, we shall see in 4.9 that rational 3-tori 
are subhomogeneous. More generally, it has recently been shown in [45], building heavily 
on [33] and [34,35], that any noncommutative 3-torus is the inductive limit of type I C*- 
algebras (see [45], Corollary 1, for a more precise statement; this result holds for almost 
all noncommutative n-tori, as shown in [20]). This strengthens the fact known earlier that 
.Ao is nuclear. It is also known that every nonrational noncommutative torus is so-called 
approximately divisible and therefore has stable rank 1 and real rank zero whenever simple 
(cf. [19]). 

4.6 

We shall need some results concerning the K-theory of noncommutative 3-tori. Short 
overviews of K-theory for C*-algebras may be found in [10,14,37]. A much more compre- 
hensive treatise is [18], which includes a proof of the Pimsner-Voiculescu (PV-)sequence 
for crossed products of C*-algebras by actions of 72. One of the main motivation in the 
original paper of Pimsner and Voiculescu ([49]) was that this sequence enabled them to 
compute the K-theory of A0 • They obtained 

K0(.A0) --~ 722 ~ KI (.,40). 

By taking into account the fundamental construction of Rieffel [5 1 ] of a nontrivial projection 
in ,,40 of trace 0 when 0 6 (0, 1), they showed further that ,Ao is isomorphic to ,Ag if and 
only if 0 = 0 or 1 - 0(rood 7/). 

Now one may decompose a noncommutative 3-torus .Ao as the crossed product of ,,4o3 
by an action of 7/as follows. Using 4.4, let a I denote the automorphism of ,Ao3 satisfying 
Otl (U) = e izzr02 U, ~1 (V) = e -izrr01 V, where U and V denote the canonical generators of 

~403 • This automorphism induces an action ofT/on Ao3 and the resulting C*-crossed product 
is then isomorphic to AO, since it is generated by the unitaries U, V and W, where W is the 
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unitary inside the crossed product which implements a l ,  and satisfies the same universal 

property as ,Ao, as follows readily from the universal property of  the crossed product. 
By exploiting the PV-sequence associated to this decomposition, one gets 

K 0 ( A o )  "~ 7/4 "~ Kl(,,40). 

This result is due to Elliott ([3 1 ], see also [5 11) in the more general case of noncommutative 

n-toil, using an analogous inductive step. When choosing n = 3, the main result of [30] 

says that if one denotes by r ,  the canonical homomorphism from K0(AO) into N induced 

by the tracial state r on A o  defined in 4.2, then one has 

r , ( K 0 ( A O ) )  = 77 + 0177 + 0277 + 0377 

and also r ,  = r" whenever r '  is another tracial state on A O  (if in the degenerate case). 

4.7 

One may also decompose ,,4 0 as a twisted C*-crossed product ([63]) of C (T) by a twisted 

action (g, co) of  Z 2 as follows. 

We define 13 : y2 ) Aut(C(T))  by 

(13re(f))(Z) = f (e -i27r(mlO2-m201)z) 

and co : 7/2 x 77 2 ~ T by 

co(m, n) = e izrO3(mln2-m2nl). 

It is not difficult to verify that this gives a twisted action of772 on C(T) and that the resulting 
twisted C*-crossed product is isomorphic to ,40 ,  using the universal defining properties 

of both these C*-algebras. As we will not use this result explicitely later on, we do not 
elaborate on the proof. We mention it because it is related to the connection between 3D 

discrete magnetic Laplacians and 2D almost Mathieu operators we shall etablish in 5.10. 

One may also use it in conjunction with the main theorem in [6] to obtain another proof of 

Slawny's result recalled in 4.5. 

4.8 

We will now present a classification theorem for noncommutative 3-tori, which illustrates 

that not all results concerning noncommutative 2-tori do have a direct analogue in 3D. Up 
to the result mentioned in (d) below, this theorem is due to Brenken ([21 ]). Our presentation 
will be somewhat different from his, and hopefully more straightforward. 

Let us first remark that the canonical action of SL (2, 7/) on C (T 2) as toral automorphisms 

may be generalized to produce an action of SL (2, 7/) on any noncommutative 2-torus ([60]). 
If  one carries out the same idea in 3D, then the outcome may be described as follows: 

(a) Let A E SL(3, 7/). Then there exists an isomorphism tA from A O  onto AAO such that 

~A0,O(Y)) = "kA@(AY) for all y 6 7/3. 
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Proo f  (sketch). The clue is that we have 

(Ax, Ay)  a 0 = det([ A O l A x l A y ] )  

= det(A[Olxly])  = det(A) det([~glxly]) 

= (x, y) o for all x, y ~ 7/3. 

Now define UA as the unitary on ~e(7/3) given by 

(UA¢)(X) --'~ ~ ( A - l x ) .  

Using the clue observation above, a short computation gives 

UA~,O(y)U~ = ~.ao(Ay)  

for all y ~ 7/3, and it is then clear that the restriction of Ad(UA) to ..zt O has the desired 

properties of  t A. [] 

We remark that if one starts with some B 6 GL(3,  Z) satisfying det(B) = - 1  and 

proceeds analogously, the outcome is then an isomorphism from ,A~9 onto ~ a ~  conjugated 
to lA, where A = - B  ~ SL(3,  Z). 

Obviously, we may introduce an equivalence relation ,~ on ~3 by setting 

69 --~ (9 .'. ?, there exists A ~ SL(3,  7/) such that (9 = A O ( m o d  7/3). 

By combining 4.1 and (a) above we get: 

(b) 0 ~ (9 ,~ A o  ~- A O. 

We may also introduce another equivalence relation ~ on R 3 by setting 

~9 ~ (9 ~. ',. there exists B 6 GL(3 ,  Z) such that (9 = B~9(mod 7/3). 

Then we have 

(c) A o  -~ A b  ~ O ~ (9. 

Proof  (sketch). We adapt the line of  proof given by Yin [61 ] in the 2D case. Assume that ~b 
is an isomorphism from ¢40 onto .A~. Using 4.1, we may assume that 0 < Oj, Oj < 1, j = 

1, 2, 3. We denote by ? the canonical trace on .A~9. 
Using the PV-sequence on the decomposition of a noncommutative 3-tori as a crossed 

product of  a noncommutative 2-tori by an action of ?7 described in 4.6 , together with 
the appendix of [49], it is not difficult to see that there exist (Rieffel or Bott) projections 

Pl ,  P2, P3 (resp./51, P2, ,63) in ..40 or in M2(.AO) (resp. in .A~ or in M2(.A~)) such that 

Ko(.AO) ~-Z 4 with generators [1], [pl] ,  [p2], [P3], 

Ko(.Ao) "~ Z 4 with generators [1], [fix], [/32], [/53], 

and 

r , ( [pk])  = Ok, ~,([/3k]) = 0k, k = 1 ,2 ,3 .  
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Let 4~, denote the isomorphism from K0(.40) = [117/~9 [pl])7 ~ [P217/@ [p317/ 
onto K0(.40) ----- [117/@ [/5117/@ [/52]7/@ [/53]7/induced by 4~. As 4~,([1]) = [1], the matrix 
of ~b, with respect to these decompositions must be of the form 

1 al a2 a3 7 
0 bll bl2 bl3 / 
0 b21 b22 b 2 3 | '  
0 b31 b32 b33 

where al, a2, a3 e Z and B = [bjk] ~ GL(3 ,  7/). 

Now, as ~ o~b is also a tracial state on .40,  we know from [31], cf. 4.6, that r ,  = (~" o~b), = 
~, o 4~,- Hence, for each k = 1, 2, 3, we get 

0k = r,([pk]) = f',(~b,([p~]) 

= f',(ak[1] + bl/~[/51] + b2k[/52] + b3k[/53]) 

= ak + blk01 + b2k02 + b3k~. 

This gives 69 = Bt~9(mod 7/3) and therefore 69 ~ ~9 as desired. [] 

The next statement looks quite innocent at first sight, but is in fact nontrivial, as it relies 
on some deep results of Elliott and Lin. We have 

(d) "40 "~ .4(-0).  

Proof (sketch). When d(69) ~ {1, 2}, it follows from simple considerations that 69 
(-69),  hence AO -~ A¢-O) by (a). Assume now d(69) E {3, 4}, i .e . .40  is simple with a 
unique trace by Slawny's theorem. Then, as shown in [45], .40  is a unital inductive limit of 
direct sums of four circle algebras. Consequently, using the classification theorem of Elliott 
in [32] (see also [46]), the ordered K0-group (cf. [18]) with distinguished order unit is a 
complete isomorphism invariant for simple noncommutative 3-tori. Now let .4~ denote the 
C*-algebra opposite to .40,  i.e. equipped with reverse multiplication. By construction, it is 
clear that .4 0 and "4~ have the same invariant. On the other hand, it is quite obvious that 
.4~ is isomorphic to .4(-0).  Hence we deduce that ,,4 0 _ "4(-O/as desired. [] 

By using (b)-(d) we obtain the following classification result. 

Theorem. We have .A 0 ~- A O  ~ ,~ 69 ~ (9. 

Concerning the classification of noncommutative smooth 3-tori, regarded as locally con- 
vex topological algebras in a natural way, a deep result from [21,22,27], relying on Connes' 
cyclic cohomology, says that 

As alluded to in [21], this classification result, combined with (d), has the following 
consequence. Assume that d(69) = 4, i.e. 69 is totally irrational. Then we have ,4 0 --~ 
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.A(_o), while .A~ is not isomorphic to .A~_o). This means that .40 is then an example of 
a simple C*-algebra with two different differential stuctures. 

4.9 

We shall briefly explain how rational noncommutative 3-tori are easily classified and 
how any such algebra is isomorphic to a C*-subalgebra of some matrix algebra over C(~ -3) 
(and thereby subhomogeneous). 

We assume that O is rational, Oj = pj/qj ~ Q, j = 1, 2, 3, and without loss of generality 
(using 4.1) we also assume that 1 _< Ipjl <<_ qj and (pj, qj) = 1, j = 1, 2, 3. 

We set q = q(O) = 1. c. m. (ql, qe, q3) and ~9 = (0, 0, 1/q). A simple number- 
theoretical argument gives that ~9 "~ ~9. Hence we have 

the first isomorphism being given by 4.8 (b) and the second being the natural one determined 
by sending the canonical generators/-)l, t)2 and U3 of .A~9 onto 1 ® U, 1 ® V and W ® 1, 
respectively, where U and V denote the canonical generators of ~41/q and W the canonical 
generator of C(qY). We refer to [21] for an analogous result for rational noncommutative 
toil of arbitrary dimension. It follows easily from this result that rational noncommutative 
3-tori are classified by q (69). 

If q = 1, i.e. ~9 = (1, l, 1) ~ 0, then ,Ao -~ C(~-3). Assume now that q >_ 2. Then 
it is known ([11,24]) that ~41/q is isomorphic to the C*-subalgebra of C(~ -e) ® Mq (C) 
C(-~ 2, Mq (C)) generated by the two Mq (C)-valued functions U and V on ~-2 defined by 

E i  1 0 . . .  
t ) (z l ,  z2) = Zl 

0 0 . . .  
0 0 . . .  

e i 27 r ( l / q )  0 

~ r ( Z l  , Z2 )  = Z2 . . 

0 0 

0 

1 

0 

. •  . 

• .o 

• ° ° 

0 l 0 

ei2yr ( q -  1)/q 

It follows therefore that.Ao is isomorphic to the C*-subalgebra of C (-0-) ® C(~ -2, Mq (C)) ~_ 
C(q1-3, Mq(C)) generated by the three Mq(C)-valued functions UI, U2 and U3 on T 3 
defined by 

0 1 ( Z l ,  Z2,  Z3 )  = / - ~ ( Z l ,  Z 2 ) ,  

t)Z(Zl, z2, z3) = f'(zl, z2), 
/)3(zl, z2, z3) = Z3Iq (lq denoting theq x q identity matrix), 

via an isomorphism sending Uj onto Uj, j = 1, 2, 3. 
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Combining this with the result above, we obtain that .40  is isomorphic to the C*- 
subalgebra of C ( T  3, Mq (C)) _~ Mq (C(T3)) generated by / ) l , / )2  and/)3, as desired. 

4.10 

Let I denote a closed box in R 3 equipped with its usual topology. It follows from a 
more general result on continuous fields of C*-algebras arising from varying cocycles on 
amenable groups due to Rieffel ([53], see also [36]) that the family {.Ao}o~ ! = {Cr*(Y 3, 
aO) }Osl is a continuous field of C*-algebras. Its associated C*-algebra .AL ~ of continuous 
sections may be described as the twisted C*-crossed product C*(C(I), 77 3, id, crl), where 
id denotes the trivial action of 77 3 on C(I) and al denotes the 2-cocycle on 773 with values 
in the unitaries of C(I) defined by 

[~rl(X, y)](O) = cro(x, y). 

Indeed, for each O e I, there exists a canonical homomorphism Jr O from C*(C(I), 773, id, 
cq) onto C*(77 3, cr O) ~- C*(Z 3, aO) determined by 

zro(aXi(m)) = a ( O ) X o ( m ) ,  a E C(I), m ~ 773 

(where Xi(m) denotes the canonical unitary in C*(C(I), 7/3, id, ~ri) associated to each 
m e Z3). 

The map zr from C*(C(I), 77 3, id, ~ri) onto AI.~ defined by 

7r(A) = {Jro(A)}o~ I 

gives then the desired isomorphism. 
We remark that one may avoid introducing twisted C*-crossed products explicitely by 

adapating the approach described by Bellissard ([15]) in the 2D case. There is also another 
approach due to Anderson and Paschke ([ 1 ]) in the 2D case which is related to the group C*- 
algebra of the classical 3D discrete Heisenberg group. This approach may be carded over 
to the 3D case and is then related to the group C*-algebra of some 6D discrete Heisenberg 
group. In fact, there is a subtlety here in that choosing different cocycles does not necessarily 
lead to isomorphic Heisenberg groups. As it would take us too far afield from our main theme 
to explain this more precisely, we will deal with these matters in a separate work ([8]). 

. Some spectral properties of 3D discrete magnetic Laplacians 

We continue to use the notation introduced in the previous sections. 
Let (9, c E R 3. We set 

S(O, c) = Sp(Ao,  c) and S(O) = Sp(z30)  = S(O, (1, 1, 1)). 
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5.1 

Proposition. Let e = e ( m o d  Z 3) and ~ = ('4-Cl,  '[-c2,  '[-c3). Then we have 

S(&, c) = S(O,  c) = S(O, ~). 

Proof. The first equality follows easily from 4.1. Let "7 = (+ l ,  + l ,  + l )  6 T 3. From 4.4 
we get ¢~3,(AO,c) = AO, ~ and the second equality follows readily. [] 

5.2 

Proposition. Let a = II zae,c II. Then S(O, e) is a closed subset of I - a ,  a] which is sym- 
metric around 0 and contains -Fa. 

Proof. Using 5.1 with fi = - e  we have 

S(O,  c) = Sp(zaO,(_c)) = Sp(-zae ,c )  = - S ( O ,  c). 

As AO, c is bounded and self-adjoint, the result follows from elementary operator theory. 
[] 

An obvious upper bound for II zae,c II is 2(Icl I + Ic21+ Ic3 I). Determining better estimates 
for II Ae,c II, or just for Ilzaell, should be a challenging problem, as it is in the 2D case 
(see [9]). 

5.3 

Let 0, c e •, c ~ 0. In the 2D case, we have 

Sp( A(_o),c) = Sp( Ao,c) = cSp( Ao, ~ ), 

the second equality being usually called Aubry (or Andr~-Aubry) duality, cf. [3,11,13]. A 
somewhat analagous result in 3D may be formulated as follows. 

Proposition. Let e = (-FOp(l), 4-0p(2), +0pO)) and ~ = (Cpd), cp(2), ¢p(3)), where p is a 
permutation of{l ,  2, 3}. Then we have 

S(&, ~) = S(O, e). 

Especially, we have 

s((9) = s ( o ) .  

Proof. The second assertion follows from the first by setting e = (1, 1, 1). The first assertion 
is proved by the following three steps. We denote by A the standard matrix of the linear 
map O ~ O from R 3 into R 3, so A ~ GL(3, Z). 
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(i) Assume first that det(A) = 1. Then one checks easily that the isomorphism t A from 

-40  on to  ,AAO = .A~ introduced in 4.8 (a) sends AO. ¢ to z~@,~. Hence we get 

S ( ~ ,  E) = S(O,  c) in this case. 

(ii) Secondly, we observe that there exists an obvious natural anti-isomorphism from ,4 8 

onto -4~-0) (by identifying -4(-O) with the opposite algebra of  . 40 )  which sends 
AO. c to A(_O).c. As anti-isomorphisms also preserve spectra, we get S ( -69 ,  c) = 
s(o, c). 

(iii) Assume at last that det(A) = - 1 ,  so d e f t - A )  = 1. Then, writing ( - 8 )  = ( - A ) 6 9  

and using i), we get S ( -~9 ,  (:) = S(~9, c). On the other hand, using ii), we have 
S ( - ~ ,  E) = S ( ~ ,  E). Hence we get S ( ~ ,  E) = S(~9, c) also in this case. [] 

The connection with Aubry duality is more apparent when (at least) two of the components 

of  ~9 are equal (mod 7/3). Assume for example that 01 = 02. By choosing p to be the 
permutation interchanging 1 and 2, we get then 

S(O,  c) = S(O,  (c2, Cl, c3)), 

and therefore 

S(~9, (1, c, d)) = cS(~9, (1, 1/c, d /c ) ) ,  c ~ O. 

5.4 

By using Propositions 5.1-5.3, we see that we may restrict our attention to the case when 

0 < 01 < 02 < 03 < 1 / 2 a n d c j  > 0, j = 1 ,2 ,3 .  

5.5 

Proposi t ion.  Let c ~ O. Then AO, c has no point spectrum. Especially S(~9, c) has no 

isolated points, i. e. is a perfect set. 

Proofi We adapt an argument due to Delyon and Souillard ([29]) given in the context of  
1D random discrete Schr6dinger operators (see also [28]). 

Let J be a finite, nonempty subset of  7/3 and denote by Pa the orthogonal projection from 
£2(773) on to  £2( j ) .  Let W ~ WO. 

Since r ( W )  = r0~O(x)*W~.o(x))  = (WSx, 8x) for all x ~ 77 3, we get easily 

1 
r ( W )  = T r ( P j W ) .  

#(J) 

Set now J(n)  = { - n  . . . . .  0 . . . . .  n} 3 and Pn = PJ(n) for each n E 1~. 

Assume (for contradiction) that ~. ~ ~ is an eigenvalue for zaO, ¢. Denote by Q ~ W o  
the spectral projection of  z10, c associated to {~.}, so Q 5~ O. 
Let n ~ t~, n > 3. Using the definition of AO, e and the assumption that c has (at least) one 
nonzero component, it is not difficult to see that 
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dim(Pn Q(£2(7/3)) _< # ( J ( n ) \ J ( n  - 2)). 

(One can achieve a better upper bound here, but this one suffices for our purposes.) Hence 

we get 

1 
0 < r ( Q )  - - - I T r ( e n  Q)I <__ - -  

#(J (n ) )  
# (J (n )  \ J (n  - 2)) 

< 

- -  # ( J ( n ) )  

But, as 

#(J (n ) )  
dim(Pn Q(e2 (773))) 

# ( J ( n ) \ J ( n  - 2)) (2n + 1) 3 - (2n - 3) 3 
= > O a s n  ---> o~, 

#(J (n ) )  (2n + 1) 3 

this implies that r ( Q )  = O, thus Q = 0 as z is faithful. We have obtained a contradiction, 

and the result follows. [] 

With some more work, the same idea can be pursued to show that this proposition 

also holds for any nonzero selfadjoint operator lying in the *-algebra generated by {)~O(Y) I 
y ~ 773}. 

5.6 

Let {Fn}n>_l be any F61ner sequence for 77 3 (cf. e.g. [7]). For example, we may take 

Fn = { - n  . . . . .  0 . . . . .  n} 3 or f n = {0, 1 . . . . .  n} 3. Set 7-/n = e2(Fn) and let Pn be the 
orthogonal projection from e2(77 3) onto ~2(7-/n). Let T 6 W O. 

We denote by / z~  the spectral measure of  the compression Tn = Pn TIT~, with respect to 
the normalized trace on 13(7-[n), i.e. 

1 
kt~ (S) = #(Fn-----S " (number of  eigenvalues of  Tn in S) (multiplicities counted). 

The IDS (integrated density o f  states) of T at X 6 R (with respect to {Pn}), see [3,28] for 

an explanation of this terminology, is defined by 

NT(X) = lim /z~-((-c~,  )q), 

whenever this limit exists. 

On the other hand, let /z~ denote the spectral measure of  T with respect to r ,  so 

# rT ( S) = r ( E T ( S) ) , S Borel subset of  •, 

where ET denotes the projection-valued measure associated to T in WO. 
The spectrum distribution function of T ( in the terminology of [55]) is defined by 

DT(X) = ~ ( ( - - O o ,  X]), X E R. 

It follows f r o m  [7] that the Borel probability measure/x~ converges weakly to /x~  as 
n --~ c¢. From a classical result in probability theory, this implies that NT 0,) exists and 
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is equal to DT (~.) whenever/z~ ({~.}) = 0, i. e. whenever )~ is not an eigenvalue of T, or, 

equivalently, whenever DT is continuous at ~. Taking into account Proposition 5.5, the next 
proposition clearly follows. 

Proposition. The IDS of A o x  exists for all )~ E ~. It is continuous on R and equal to the 

spectrum distribution function of AO, c. 

It is elementary to see that S(19, c) may be described as the support of the spectral 

measure of AO. c with respect to r (cf. [7]), i.e. as the set of nonconstancy points of the 
spectrum distribution function of AO, c. Hence, the above result means that S(~9, e) may be 

approximated numerically by computing the spectrum of Pn Ao.clnn for large n (cf. [2,7]). 
However, it seems quite hard to do this in an effective way, the size of the resulting matrices 
being of order n 3 × n 3. We shall describe in 5.7 and 5.11 some other numerical methods 
which seem potentially more efficient. 

5.7 

Proposition. Let ~9 be rational. Then every selfadjoint operator in .48  (so especially 

AO, c ) has a band-spectrum. 

Proof. This follows from 4.9. If we use the notation introduced there and let q ----- q(O),  
then every element of .4 8 may be represented as a q × q matrix over C(q/-3). Hence the 

spectrum of every selfadjoint operator in .48  must consist of at most q bands.(This can 
also be deduced using the main result of [31] mentionned in 4.6). [] 

For concretely given ~9 6 Q3 and c 6 E3, it is possible to trace the isomorphism f rom-40  

onto Mq (C (q1-3)) described in 4.9, and thereby obtain a (somewhat complicated) formula for 

the representative of AO, c in Mq (C(T3)), from which S(~9, c) can then be approximated 

numerically. However, we have not so far found an effective procedure which implements 
this process in general, and each case must be computed separately. The simple case when 

q(69) = 2 can be done by hand, and one obtains e.g. 

S((O, O, ½)) = [ -2(1  + ~/'2), 2(1 + q/2)], 

S(O, ½, ½) = [ - 2 v ~ ,  2v/5], 

S(½, 4, ½) = [-2-v/3, 2v~].  

In view of the above remark, the next result means that it should then be possible to 

compute better and better approximations of S (~ ,  e) for a given nonrational 8 ,  but so far 
only in a quite ineffective way. We hope to come back to these numerical considerations in 
a later work. 

5.8 

Proposition. Let c ~ ~3 and let I denote a closed box in ~3 containing ~9, equipped with 



224 E. Bddos/Journal of Geometry and Physics 30 (1999) 204-232 

its usual topology. Then the family {S(69, c)}o~ I is continuous in the following sense : For 

each open set U c_ R, the sets {69 6 IIS(69, c) c U} and {69 ~ IIS(69, c) N U ~ 0} are 

both open subsets of  I. 

Proof. Since the family {.A~9}~9~I is a continuous field of  C*-algebras, cf. 4.10, and 
{ A~9,c}O~i is a normal continuous section of it, the result follows from [30]. Alternatively, 

one can proceed as in [15]. [] 

It is easy to see that the map c > S(69, e) is Hausdorff-continuous. It is quite pos- 
sible that the map 69 > S(69, c) is also Hausdorff-continuous (as its analogue is in the 

2D case, cf. [24], see also [38]). We shall give an indication of  this in 5.1 1. The con- 

tinuity property expressed in the proposition above is weaker than Hausdorff continuity. 

It may be rephrased as follows: whenever 69k is a sequence in R 3 converging to 69, we 
have 

S(69, c) = {)~ 6 • I 3),k 6 S(69k, c) for each k, s. t. )~k ---> )~}. 

5.9 

In the simple case when 69 is parallel to one of the axes, we can say more about S(69, e). 
Without loss of  generality (using 5.3), we only consider the third axis. 

Proposition. Let 0 ~ R and set 69 = (0, 0, 0). Assume that c3 ~ O. Then S(69, c) is not a 

Cantor set and we have 

5(69) = [ - ( 2  + tlza011), (2 + Ilza011)]. 

Proof. Let U and V denote the canonical generators of  .Ao and W denotes the canonical 
generator of C(T). Then there exists an obvious isomorphism zr from ,A~9 onto C(qY) ® ,Ao 
satisfying 

rr(Ul) = 1 ® U, ~ ( U 2 )  = 1 ® V, rr(U3) = W ® 1. 

Hence we get 

rr(A~9,c ) = 1 ® [el(U* + U) + c2(V* + V)] + c3(W* + W) ® 1, 

which implies that 

S(69, e) = Sp(cl (U* + U) + c2(V* + V)) + c3Sp(W* + W) 

= Sp(cj(U* + U) + c2(V* + V)) + [-21c31, 21c31] 

and the first assertion clearly follows. Further, this gives 

S(69) = Sp(Ao) + [--2, 2]. 
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Now we have IIA01[ ~ 4 and Sp(Ao)  c [--IIA011, IIA011] with +llA011 E Sp(zao) (from 
the 2D analogue of Proposition 5.2). Further, we know from [24, p. 232], that 0 E Sp (Ao). 

The last assertion is then easily deduced. 13 

The case when O = (0, 0, 0) and c3 = 0 is essentially the 2D problem. For example, we 
have 

S((0, 0, 0), (cj, c2, 0)) = cl Sp(Ao.c2/~.I ) whenever cj ¢ 0, 

and this set is then "generically" a Cantor set, cf. [17]. 

The above proposition illustrates that the gap labelling theory (see [ 10,14]) is not always 

useful. This theory predicts that when 69 = (0, 0, 0), the possible gap levels for A O are 
given by numbers in (7/+ 07;) M [0, 1] (using 4.6). On the other hand, the only gap levels of 

A O in this case are 0 and 1, since S(O)  is then connected, as shown above. Note that we 
are within the degenerate case for this choice of O. It is conceivable that the gap labelling 

theory may turn to be useful only when 69 is nondegenerate. 

5.10 

We shall now etablish a connection between 3D discrete magnetic Laplacians and some 

2D discrete almost periodic magnetic Schr6dinger operators, which we call 2D almost 
Mathieu operators in view of the obvious analogy with such 1D operators. We first define 
these operators. 

Let 69, c E •3 be given. We denote by U and V the canonical generators of,A,o 3 acting on 
£e(ye). For each/3 e E we define F~ to be the multiplication operator on £e(7/e) associated 
to the real function on 7; 2 given by 

(ml,m2) > 2cos(2yr(ml02--m201 +/3)) .  

We define then the 2D almost Mathieu operator on ~2(7;2) associated to O, c, fl as the 
operator given by 

HO,c,~ = cl(U* + U) + c2(V* "b V) + c3F/~. 

To see more clearly the analogy with the 1D almost Mathieu operators defined in 
Section 2, we observe that i fc  = (1, c, d), we have 

HO.c. ~ = A03.c + dF~. 

To etablish the desired connection, let us now introduce the unitary operator W~ on e 2 (772) 
defined as the multiplication operator associated to the complex function on 772 given by 

(ml, m2) > e i2zr(mtO2-m2Oj+[3). 

Then we clearly have F/~ = W~ + W~. Further, one checks that U, V and W~ satisfy the 
relations 

U V  = ei2:r°svu, VW~ = e i2zr01WI~V, W~U = ei2~°2UW~. 
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Using the universal property of  .Ao, there exists a homomorphism zr~ from .Ao onto 
C*(U, V, W~) such that 

:rt'fl(Ul) : U,  7rfl(U2) : V, 7t'/3(U3) : Wfi. 

Then we get 

7r/3 (Ao,  c) = HO,c,/3. 

As briefly described in 4.7, .Ao may be written as a twisted crossed product of  C(T) by 
a twisted action of 772, and rrt3 is then a representation of this crossed product obtained by 

a well-known procedure. 

Our interest in 2D almost Mathieu operators stems from the following result, which is 

clearly analogous to one of the results recalled in Section 2. 

Proposition. We have 

S(O,  c) = Sp(Ho,c,~) if69 is nondegenerate, 

S(O, c) = U Sp(Ho,c,~ ) ifI9 is degenerate. 
fiE[O, 1] 

Proof.  The proof goes along the same lines as in the 2D case (see [24, p. 235]). If  ~9 is 

nondegenerate, then.,4 0 is simple by Slawny's theorem and zr~ is therefore an isomorphism, 

so S(¢9, c) = Sp(Ho,e,~) as desired. 
Assume now that {9 is degenerate. It is then enough to show that the family {~r~}/3s[0, II 

of  representations of  ..4 0 is separating, i.e. that 

if:= N kerJr~={0}, 
¢3~[o,11 

since this implies that 

s( 9,c) = [,_J se(I-Io, ,e)= U se(I-Io, ,e), 
/3~[0,11 /3<[0.11 

the last equality being not hard to see. 
To show that ,.7 = {0}, we appeal to the action oe of q1-3 on .,4 0 defined in 4.4: as a is 

ergodic, it is then enough to show that f f  is invariant under or. 
For Zl, z2 6 ql-, let Vz~.z 2 denote the unitary operator on e2(2 v2) defined as the multipli- 

cation operator associated to the complex function on 77 2 given by 

(m l, m2) > z~ n ' z2  2. 

For fl 6 ~, we may then define a representation zrz~,zz,/3 o f , A o  on e2(772) by 

rrzj,z2,13 = (Ad Vzl,z2) o n't~. 
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Now, if 3' 6 1]-3 and we write F3 = e i2zr~° for some ~o 6 R, then one checks that 

Jl'Zl,.72,fl O 0~3" = 7rZlyl,Z2Y2,fl_l_o). 

So if A 6 i f ,  we get 

rr/~ (~3" (A)) = 7rl. I./~ (~3" (A)) 

= n×~ ,~2.Z+o,(A) 

= (ad Vy,.~,2)(rr~+~(a) ) 

= 0  

for all/~ ~ R, which implies that 

u3"(a) ~ M kerzr/4 = M kerzr/4 = , f ,  
/4¢~ /4¢[0,11 

as desired. [] 

The spectrum of a 1D almost Mathieu operator may be approximated by considering its 

compressions to finite dimensional subspaces of  the canonical basis of  g2(Y) (cf. [2]), and 

this can be done in an effective way as the matrices one has to work with are tridiagonal 

selfadjoint matrices (as done in the computer program pending with [2]). Using [7], the 

spectrum of a 2D almost Mathieu operator may also be approximated by the same method, 

but now it seems hard to do this in an effective way as the matrices are not tridiagonal in 

this case and one quickly runs into numerical problems. 

If  one of  the components of O is an integer, one may introduce some generalized I D 

almost Mathieu operators, as we do below, to which one should be able to adapt Arveson's 

program. 

5.11 

We assume for simplicity that (9 = (0, 02, 03) throughout this section. 
When 0,/~ 6 ~, we recall from Section 2 that Mo,~ denotes the multiplication operator 

acting on e2(7/) associated to the function 

m ~ 2 cos(27r(m0 +/3)) .  

We also recall that ,g denotes the Laplacian on ez(y).  

Let now e E R 3, f12,/J3 E N. We define the generalized 1D almost Mathieu operator 
h@.¢,&,~3 as the operator acting on ez(y)  given by 

h0,c.#2,/33 = cl A + c2M03,1~3 + c3M02,¢~2. 

We first etablish the connection with AO. e , which motivates the somewhat surprising 

ordering of  indices in this definition. Let z2, z3 6 T. We define unitary operators U, V.- z 
and W:3 acting on e2(77) by 
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U ( ~ ) ( m )  = ~(m - 1), 

Vz2 = multiplication by the function m 

Wz3 = multiplication by the function m 

) z2e -i2Jrm03 , 

) Z3 ei2zrm02" 

Then one checks that U, V: 2 and Wz3 satisfy the following relations 

UVz2 ~-- ei2:rr°3 Vz2U, Vz21cVz3 = Wz3 Vz2 , Wz3U -~- ei2rrOeUWz3. 

Using the universal property of `40, there exists a homomorphism ~r:2,z 3 from ,4 0 onto 

C*(U,  Vz2, Wz3) such that 

Jr~2,~3(Ul) = U, rrz2,~3(U2) = V~2, rrz2,~3(U3) = W~ 3 

Now, if we write z2 = e -i2zrfl3 , Z3 = e i2rr/~2, for some/32,133 6 ~, then a short computation 

gives 

7rz2,z3 (AO,c )  = ho,c,¢~2,/%. 

Further, as to be expected, we get again an analogous result as in the 2D case. Note that 

with our standing assumption, O is degenerate when 1, 02 and 03 are rationally dependent, 
and nondegenerate otherwise. 

Proposition. We have 

S ( ~ ,  c) = Sp(ho,c,[~2,[% ) if  ~9 is nondegenerate, 

S ( O ,  c) = U Sp(ho,e,~2,~3) i f  O is degenerate.  
j52,/~3 ~[0,1] 

Proof. The proof follows the same lines as the proof of Proposition 5.10, so let us be 

somewhat more sketchy. The nondegenerate case should be clear. In the degenerate case, it 

is enough to show that the family {zrz2,: 3 }z2,z3e~ is separating, and this is done by showing 
that K~ is invariant under the action ~ on .4 O, where 

K~ := N kerTrz2,z3" 
Z2,Z3E]T 

For zl 6 T, denote by Uzt the unitary operator acting on £2(77) given as the multiplication 
operator associated with the function 

m ) (zl) m. 

Then, for zl, Z2, Z3 E ]]-, define a representation rc,, ,zz,z3 of .40  on  g2(7/) by 

zrzl,zz,z3 = ( A d  Uz~ ) o 3Tzz,z 3 . 

Let A ~ K~, 3' ~ q]-3. As 

3"/'ZI,Z2,Z3 0 @,"~ : ~'/'ZlYl,Z.2Y2,Z3Y3~ 
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we get 

Y'YZ2,-~3 (o f , i f (A) )  = 7~y I ,z2Y2,z3Y3 (A) 

= (Ad Uy I )(~z2Y2.-3Y3 (A)) 

0,  

for all z2, z3 ~ 7,  hence Of~/(A) E 1C as desired. [] 

This result is interesting in several aspects. First, it is clear that generalized 1D almost 

Mathieu operators are 1D discrete almost periodic Schr6dinger operators (sometimes called 

almost periodic Jacobi matrices, cf. [28,56]). Quite a lot is known about this class of  oper- 

ators and it has been observed that the spectrum of such an operator has a tendency to be a 

Cantor set. Hence, the above result supports the idea that the spectrum of a 3D discrete mag- 

netic Laplacians could always (or at least generically) be a Cantor set in the nondegenerate 

case. 

Secondly, it is not difficult to see that one may use the method of Arveson ([2,7]) to 

approximate spectra of generalized 1D almost Mathieu operators, and this may be done 

effectively as the matrices to be diagonalized are now tridiagonal, cf. our comment at the 

end of  5.10. Hence, the above result may be used as a basis for approximating spectra 

of 3D discrete magnetic Laplacians (for the class of 69 considered in this subsection), in a 

different way than the one alluded to in 5.7. Again, we hope to come back to these numerical 

considerations in a later work. 

Finally, it opens up the possibility that one may be able to adapt some of the arguments 

used in the study of  2D discrete magnetic Laplacians to the 3D case considered here. For 

example, we have checked that one may adapt the proof of Theorem 5.3 in [24], to show 

that the map 69 - - ~  S(~9, c) is Hausdorff-continuous when restricted to the set of 69 with 

01 = 0, cf. our comment in 5.8. Note that the tridiagonality of generalized 1D almost 

Mathieu operators is important for carrying out the argument. 

5.12 

We have written this paper as an introductory text and there is clearly a lot of work left 

to be done. Besides the questions mentionned so far, one may ask e.g. wether anything 

can be said about the Lebesgue measure of  S(~9, c) (cf. [44] and references therein for 

the 2D case), or about its Hausdorff dimension. Another question is wether it is possible 

to use semiclassical analysis ([13,39,57]) in the study of  S(~9, c) . We hope this article 

will succeed in drawing attention to this fascinating subject, which we think deserves to be 

investigated more thoroughly. 
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